New physics in B_s mixing: Uplifted SUSY

Adam Martin (Fermilab)

based on work with B. Dobrescu and P. Fox (1005.4238)

Santa Fe Workshop, 2010

July 8th, 2010

Motivation

• D0 sees a ~1% asymmetry in the number of $\mu^-\mu^-$ vs. the number of $\mu^+\mu^+$ $A^b_{SL} = -(9.57 \pm 2.51 \pm 1.46) \times 10^{-3}$ (1005.2757)

 3.2σ deviation from SM

• like-sign leptons are attributed to B^0_s and B^0_d oscillation

Outline

- B mixing in the SM
- adding new physics: where? how big?
- one approach: new contributions to the phase of Ms₁₂
- Uplifted SUSY as an example

Interpreting the D0 result

B_s/B_d oscillation basics

$$B_q^0 = (\overline{b}q), \overline{B^0}_q = (\overline{q}b)$$

$$i\frac{d}{dt} \begin{pmatrix} B_q^0 \\ \overline{B^0}_q \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2}\Gamma & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & M - \frac{i}{2}\Gamma \end{pmatrix} \begin{pmatrix} B_q^0 \\ \overline{B^0}_q \end{pmatrix}$$

all of the physics is in $\,M_{12}-rac{i}{2}\Gamma_{12}$:

in the SM:

$$M_{12}$$
 vs. Γ_{12} absorptive part

dispersive part

absorptive part (intermediate states go on-shell)

both complex, due to complex V_{CKM} couplings

Interpreting the D0 result

 \bullet dimuon asymmetry can be recast in terms of the B_s , B_d "wrong charge" semileptonic asymmetries

$$A_{SL}^b = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{N_{RS}^+ N_{WS}^+ - N_{RS}^- N_{WS}^+}{N_{RS}^+ N_{WS}^+ + N_{RS}^- N_{WS}^+} \cong 0.5 \ a_{SL}^d + 0.5 \ a_{SL}^s$$
 depend on what fraction of produced b go to Bs, Bd

where:

$$a_{SL}^q = \frac{N(\overline{B^0}_{phys} \to \ell^+ X) - N(B_{phys}^0 \to \ell^- X)}{N(\overline{B^0}_{phys} \to \ell^+ X) + N(B_{phys}^0 \to \ell^- X)} \simeq -\frac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin(\phi_M^q - \phi_\Gamma^q) + \mathcal{O}(|\Gamma_{12}^q|^2)$$

some related quantities

$$a_{SL}^q = -\frac{|\Gamma_{12}|}{|M_{12}|}\sin\left(\phi_M - \phi_\Gamma\right) \text{,} \quad \Delta M_s = 2|M_{12}| \quad \Delta \Gamma = 2|\Gamma_{12}|\cos\left(\phi_M - \phi_\Gamma\right) \\ \text{mass difference} \quad \text{lifetime difference}$$

Interpreting the D0 result

 \bullet dimuon asymmetry can be recast in terms of the B_s , B_d "wrong charge" semileptonic asymmetries

$$A_{SL}^{b} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{N_{RS}^{+} N_{WS}^{+} - N_{RS}^{-} N_{WS}^{+}}{N_{RS}^{+} N_{WS}^{+} + N_{RS}^{-} N_{WS}^{+}} \cong 0.5 \ a_{SL}^{d} + 0.5 \ a_{SL}^{s}$$
 depend on what fraction of produced b go to B_s, B_d

assumes $\mathcal{A}(b \to \ell^+ X), \mathcal{A}(\bar{b} \to \ell^- X) = 0$

where:

$$a_{SL}^q = \frac{N(\overline{B^0}_{phys} \to \ell^+ X) - N(B_{phys}^0 \to \ell^- X)}{N(\overline{B^0}_{phys} \to \ell^+ X) + N(B_{phys}^0 \to \ell^- X)} \simeq -\frac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin(\phi_M^q - \phi_\Gamma^q) + \mathcal{O}(|\Gamma_{12}^q|^2)$$

some related quantities

$$a_{SL}^q = -\frac{|\Gamma_{12}|}{|M_{12}|}\sin\left(\phi_M - \phi_\Gamma\right) \ , \quad \Delta M_s = 2|M_{12}| \ , \quad \Delta \Gamma = 2|\Gamma_{12}|\cos\left(\phi_M - \phi_\Gamma\right) \ , \quad \text{mass difference}$$

In the Standard Model

• For now let's assume $a_{SL}^d=0$ since the B_d system is tightly constrained by B-factories. Whole asymmetry comes from B_s

from expt.

$$(a_{SL}^s)_{comb} \approx -(12.7 \pm 5.0) \times 10^{-3}$$

(D0 + older CDF, D0 results)

$$|M_{12}^{SM}| \simeq (9.0 \pm 1.4) \text{ps}^{-1}$$

 $|\Gamma_{12}^{SM}| = 0.045 \pm 0.012 \text{ ps}^{-1}$
 $\sin (\phi_M - \phi_\Gamma)_{SM}$
 $\simeq (4.2 \pm 1.4) \times 10^{-3}$
 $a_{SL}^s(SM) = (2.2 \pm 0.6) \times 10^{-5}$

so, how do you get a bigger asymmetry in B_s?

$$a_{SL}^{s} = -\frac{|\Gamma_{12}|}{|M_{12}|} \sin(\phi_M - \phi_\Gamma)$$

 \bullet Decrease $|M_{12}|$: look easy in that SM is a loop process, but

$$\Delta M_s = 2|M_{12}|$$
 is well measured, $\Delta M_s = 17.78 \pm 0.12 \ {\rm ps}^{-1}$

SM value $2|M_{12}^{SM}|$ is close to the experimental value, has small O(10%) theoretical uncertainty

not enough room here

how do you get a bigger asymmetry?

$$a_{SL}^{s} = -\frac{|\Gamma_{12}|}{|M_{12}|} \sin(\phi_M - \phi_\Gamma)$$

• Increase Γ_{12} : looks promising as not directly measured

$$(\Delta\Gamma = 2|\Gamma_{12}|\cos(\phi_M - \phi_\Gamma))$$

introduce NP which connects $\bar{b}s$ to light SM fields

ullet BUT, any NP which contributes to also $\,\Gamma_{12}$ contributes to $\,\Gamma_i, M_{12}$

• Also, new physics here must involve light particles in loops, so need to be careful about $b o s \gamma$, etc.

how do you get a bigger asymmetry?

$$a_{SL}^{s} = -\frac{|\Gamma_{12}|}{|M_{12}|} \sin(\phi_M - \phi_\Gamma)$$

• Increase Γ_{12} : looks promising as not directly measured

$$(\Delta\Gamma = 2|\Gamma_{12}|\cos(\phi_M - \phi_\Gamma))$$

introduce NP which connects $\bar{b}s$ to light SM fields

• BUT, any NP which contributes to also Γ_{12} contributes to Γ_i, M_{12}

• Also, new physics here must involve light particles in loops, so need to be careful about $b o s \gamma$, etc.

more on
$$\Gamma_{12}$$

$$\Gamma_{12}^{SM} = \operatorname{Im} \left\{ \begin{array}{c} b \\ \\ \\ \\ \\ \\ \end{array} \right\} \begin{array}{c} \text{confusing, but rearrange slightly} \\ V_{KM} \to V_{KM}^* \end{array}$$

more on
$$\Gamma_{12}$$

$$\Gamma_{12}^{SM}=\operatorname{Im}\left\{\begin{array}{c} b \\ \hline \\ s \end{array}\right\} \begin{array}{c} \text{confusing, but rearrange slightly} \\ V_{KM}\to V_{KM}^* \end{array}$$

more on
$$\Gamma_{12}$$

$$\operatorname{Im} \left\{ \begin{array}{c} b \\ \hline \\ s \end{array} \right\} \begin{array}{c} \text{confusing, but rearrange slightly} \\ V_{KM} \to V_{KM}^* \end{array}$$

more on Γ_{12} $\operatorname{Im} \left\{ \begin{array}{c} b \\ \hline \\ s \end{array} \right\}$

confusing, but rearrange slightly $V_{KM} \rightarrow V_{KM}^*$

more on Γ_{12} $\operatorname{Im} \left\{ \begin{array}{c} b \\ \hline \\ s \end{array} \right\} \begin{array}{c} \text{confusing, but rearrange slightly} \\ V_{KM} \to V_{KM}^* \end{array}$ so $\Gamma_{12}^{SM} \sim \Gamma_{\overline{B} \to XX} \sim \frac{G_F^2 f_B^2 M_B^3}{16\pi}$ from tree-level calculations

more on Γ_{12} $\operatorname{Im} \left\{ \begin{array}{c} b \\ \hline \\ s \end{array} \right\} \begin{array}{c} \text{confusing, but rearrange slightly} \\ V_{KM} \rightarrow V_{KM}^* \end{array}$ so $\Gamma_{12}^{SM} \sim \Gamma_{\overline{B} \rightarrow XX} \sim \frac{G_F^2 f_B^2 M_B^3}{16\pi} \text{ from tree-level calculations}$

so new physics in Γ_{12} has to be large

$$\frac{1}{\Lambda^2} \, \begin{pmatrix} b \\ \end{pmatrix} \sim \frac{f_B^2 M_B^3}{16\pi\Lambda^2} \longrightarrow \begin{array}{c} \text{big effects in } \Gamma_{B_s \to XX} \\ \text{and total width } \Gamma_{B_s} \end{array}$$

which are well measured

more on Γ_{12}

Bd decays are also affected...

$$\frac{1}{\Lambda^2} \left(\sum_{s} \frac{\overline{b}}{\Lambda^2} \left(\sum_{d} \frac{1}{\Lambda^2} \left(\sum_{d} \frac{s}{d} \right) \right) \right)$$

(see Bauer, Dunn 1006.1629)

as is
$$M_{12}$$
:
$$M_{12} = Re \left\{ \begin{array}{c} b \\ \overline{s} \end{array} \right\}$$

(almost) no room here!

how do you get a bigger asymmetry?

$$a_{SL}^s = -\frac{|\Gamma_{12}|}{|M_{12}|} \sin\left(\phi_M - \phi_\Gamma\right)$$

- \bullet Increase the phase: phase in SM is small $\mathcal{O}(10^{-3})$
- ullet based on previous arguments, changing the phase through new physics in mixing (M_{12}) seems easier

What about $S_{\psi\phi}$ (CPV in B J/ $\psi\Phi$

different observable:

assuming one decay amplitude, $\mathbf{0}^{\mathsf{th}}$ order in Γ_{12}

$$\frac{N(\overline{B^0}_{phys} \to J/\psi\phi) - N(B^0_{phys} \to J/\psi\phi)}{N(\overline{B^0}_{phys} \to J/\psi\phi) + N(B^0_{phys} \to J/\psi\phi)} = -\sin(\Delta mt)\sin(\phi_M + 2\phi_f)$$

CKM phase of tree-level

strictly speaking, not the same phase as in a^s_{SL} $b \to c \bar c \bar s$ process (relative phase of M_{12} and Γ_{12})

in the SM: $\sin(\phi_M - \phi_\Gamma)$, $\sin(\phi_M + 2\phi_f) \simeq 0$

if NP only changes phase in mixing, effect will show up in both

$$\sin(\phi_{NP} + \phi_M - \phi_\Gamma) \simeq \sin(\phi_{NP}) \simeq \sin(\phi_{NP} + \phi_M + 2\phi_f)$$

not the case if there is new physics in the phase of Γ_{12}

What about $S_{\psi \Phi}$?

both CDF/D0 measure $\,{
m S}_{\Psi\Phi}\,:$ extract $\,\Delta\Gamma\,$ and $\,\phi_M+2\phi_f$

- both experiments favor phases >> SM
- $\Delta\Gamma=2|\Gamma_{12}|\cos{(\phi_M-\phi_\Gamma)}$ so if new physics only changes the phase, $|\Delta\Gamma|$ can only be smaller than $\Delta\Gamma^{SM}\cong 2|\Gamma_{12}^{SM}|$

a first approach

Based on what we've learned, changing the phase of M_{12} through new physics is a simple thing to try first

$$\Gamma_{12}=\Gamma_{12}^{SM}$$
 $M_{12}=M_{12}^{NP}+M_{12}^{SM}\equiv C_{B_s}e^{i\phi_s}|M_{12}^{SM}|$ (set phase in $M_{12}^{SM},\Gamma_{12}^{SM}$ to zero)

$$a_{SL}^{s} = -\frac{|\Gamma_{12}^{SM}|}{|M_{12}^{SM}|} \frac{\sin \phi_{s}}{|C_{B_{s}}|}$$

plug in $M_{12}^{SM},\Gamma_{12}^{SM}$, fit to a_{SL}^s and $\Delta M_s=2|M_{12}|=2|M_{12}^{SM}|C_{B_s}$

a first approach

Based on what we've learned, changing the phase of M_{12} through new physics is a simple thing to try first

$$\Gamma_{12}=\Gamma_{12}^{SM}$$
 $M_{12}=M_{12}^{NP}+M_{12}^{SM}\equiv C_{B_s}e^{i\phi_s}|M_{12}^{SM}|$ (set phase in $M_{12}^{SM},\Gamma_{12}^{SM}$ to zero)

$$a_{SL}^{s} = -\frac{|\Gamma_{12}^{SM}|}{|M_{12}^{SM}|} \frac{\sin \phi_{s}}{|C_{B_{s}}|}$$

plug in
$$M_{12}^{SM},\Gamma_{12}^{SM}$$
 , fit to a_{SL}^s and $\Delta M_s=2|M_{12}|=2|M_{12}^{SM}|C_{B_s}$

$$C_{B_s} = 0.98 \pm 0.15$$
 , $\sin \phi_s = -2.5 \pm 1.3$

a first approach

Based on what we've learned, changing the phase of M_{12} through new physics is a simple thing to try first

$$\Gamma_{12} = \Gamma_{12}^{SM}$$
 $M_{12} = M_{12}^{NP} + M_{12}^{SM} \equiv C_{B_s} e^{i\phi_s} |M_{12}^{SM}|$

(set phase in $M_{12}^{SM}, \Gamma_{12}^{SM}$ to zero)

$$a_{SL}^{s} = -\frac{|\Gamma_{12}^{SM}|}{|M_{12}^{SM}|} \frac{\sin \phi_{s}}{|C_{B_{s}}|}$$

plug in $M_{12}^{SM},\Gamma_{12}^{SM}$, fit to a_{SL}^s and $\Delta M_s=2|M_{12}|=2|M_{12}^{SM}|C_{B_s}$

$$C_{B_s} = 0.98 \pm 0.15$$

$$C_{B_s} = 0.98 \pm 0.15$$
 , $\sin \phi_s = -2.5 \pm 1.3$

Huh?

with the set of assumptions we've made and the current experimental central value, we find an unphysical scenario

So..

• central value will decrease once errors are reduced

Or.. we need to modify our theory assumptions

- new physics also in B_d (not clear how much it can help...)
- new physics in Γ_{12}^s (input from $S_{\Psi\Phi}$)
- not a simple 2 state mixing (ask Yang...)
- muons come from some other

new physics (rate $\sim 10^{-5} \sigma_b$?)

• others?

Huh?

with the set of assumptions we've made and the current experimental central value, we find an unphysical scenario

So..

• central value will decrease once errors are reduced

Or.. we need to modify our theory assumptions

- new physics also in B_d (not clear how much it can help...)
- new physics in Γ_{12}^s (input from $S_{\Psi\Phi}$)
- not a simple 2 state mixing (ask Yang...)
- muons come from some other

new physics (rate $\sim 10^{-5} \sigma_b$?)

• others?

Huh?

with the set of assumptions we've made and the current experimental central value, we find an unphysical scenario

So..

• central value will decrease once errors are reduced

Or.. we need to modify our theory assumptions

- new physics also in B_d (not clear how much it can help...)
- new physics in Γ_{12}^s (input from $S_{\Psi\Phi}$)
- not a simple 2 state mixing (ask Yang...)
- muons come from some other

new physics (rate $\sim 10^{-5} \sigma_b$?)

• others?

let's keep going with our current strategy

thinking outside the box

Consider the situation where $\sin\phi_s$ settles to a large, but physical value

$$\sin \phi_s \sim -1$$

In this case new physics of this form needs to be large and have a large phase

What new physics can generate this?

thinking outside the box

what about tree level scalar exchange:

... occurs in general two Higgs doublet models (THDM)

(up-, down-type quarks couple to both Higgses)

 $\Delta B=2$ at tree level, while $\Delta B=1$ only occurs at loop level -> parametrically smaller

thinking outside the 'box'

Get the right size effect for

$$M_A \sim 500~{
m GeV}$$
 $y_{bs} \sim 0.01, |y_{sb}| \sim 0.001$ 'CKM sized'

>> than expected from Higgs-related FCNC

but how do you get large enough $y_{bs}y_{sb}^*/M_A^2$ without screwing up other flavor observables?

From where? Uplifted SUSY

the MSSM is a two-Higgs doublet model

Holomorphy constrains the superpotential

—— when SUSY is preserved, `type-2' THDM

$$\mathcal{L} \supset -y_u u^c H_u Q_L - y_d d^c H_d Q_L$$

BUT, once SUSY is broken, integrate out superpartners

generate a completely general THDM

$$\mathcal{L} \supset -y_u u^c H_u Q_L - y_d d^c H_d Q_L - y_u' u^c H_d^{\dagger} Q_L - y_d' d^c H_u^{\dagger} Q_L$$

so, therefore
$$m_d = y_d v_d + y_d' v_u$$

Example: gluino (or bino) loop

$$(y_d')_F = -\frac{y_d}{3\pi} e^{i(\theta_g - \theta_\mu)} \frac{2|\mu|}{M_{\tilde{d}}} \left[\alpha_s F\left(\frac{M_{\tilde{g}}}{M_{\tilde{Q}}}, \frac{M_{\tilde{d}}}{M_{\tilde{Q}}}\right) + \frac{\alpha e^{i(\theta_B - \theta_g)}}{24c_W^2} F\left(\frac{M_{\tilde{B}}}{M_{\tilde{Q}}}, \frac{M_{\tilde{d}}}{M_{\tilde{Q}}}\right) \right]$$

effective coupling y_d^\prime

$$F(x,y) = \frac{2xy}{x^2 - y^2} \left(\frac{y^2 \ln y}{1 - y^2} - \frac{x^2 \ln x}{1 - x^2} \right)$$

- ullet proportional to y_d
- knows about superpartner spectrum
- knows about complex SUSY parameters

+ additional diagrams from Higgsino loops or involving A-terms

Example: gluino (or bino) loop

SUSY breaking

$$(y_d')_F = -\frac{y_d}{3\pi} e^{i(\theta_g - \theta_\mu)} \frac{2|\mu|}{M_{\tilde{d}}} \left[\alpha_s F\left(\frac{M_{\tilde{g}}}{M_{\tilde{Q}}}, \frac{M_{\tilde{d}}}{M_{\tilde{Q}}}\right) + \frac{\alpha e^{i(\theta_B - \theta_g)}}{24c_W^2} F\left(\frac{M_{\tilde{B}}}{M_{\tilde{Q}}}, \frac{M_{\tilde{d}}}{M_{\tilde{Q}}}\right) \right]$$

effective coupling y'_d

$$F(x,y) = \frac{2xy}{x^2 - y^2} \left(\frac{y^2 \ln y}{1 - y^2} - \frac{x^2 \ln x}{1 - x^2} \right)$$

- ullet proportional to y_d
- knows about superpartner spectrum
- knows about complex SUSY parameters

+ additional diagrams from Higgsino loops or involving A-terms

if sfermion spectrum is NOT degenerate, ex.) $M_{\tilde{Q},3} \neq M_{\tilde{Q},1}$

$$F\Big(\frac{M_{\tilde{g}}}{M_{\tilde{Q},3}},\frac{M_{\tilde{d},1}}{M_{\tilde{Q},3}}\Big) \neq F\Big(\frac{M_{\tilde{g}}}{M_{\tilde{Q},1}},\frac{M_{\tilde{d},1}}{M_{\tilde{Q},1}}\Big) \quad \text{so} \quad \frac{y'_{d,13}}{y_{d,13}} \neq \frac{y'_{d,11}}{y_{d,11}}$$

mass term: $y_dv_d + y_d'v_u$ are not simultaneously diagonalizable: FCNC!

great, but y_d' is loop suppressed, so one expects these effect to be negligible...

Uplift!

what if :
$$\frac{v_u}{v_d} \sim 200$$
 ??
$$m_b = (y_b \ v_d + y_b' \ v_u)$$

- ullet large $rac{v_u}{v_d}$ overcomes the loop factor
- y'_dv_u becomes dominant contribution to mass
- big y_b (also y_τ) needed to get right m_b , m_τ

$$y_ au, y_b \sim \mathcal{O}(1)$$
 $y_{d,s} = y_b rac{m_{d,s}}{m_b}$, etc.

This is the 'uplifted region'

(Dobrescu, Fox 1001.3147)

Uplift!: How did we get here?

(see 1001.3147)

• B_{μ} term is zero at tree level

•
$$(m_{H_u}^2 + |\mu|^2) < 0$$
 , $(m_{H_d}^2 + |\mu|^2) > 0$

- ullet only the up-type Higgs gets a vev. $v_u/v_d=\infty$!
- loop effects generate B_{μ} , small $v_d \longrightarrow v_u/v_d \gg 1$
- ullet y_b , $y_ au \sim \mathcal{O}(1)$ but certainly perturbative

Uplift!: How did we get here?

(see 1001.3147)

• B_{μ} term is zero at tree level

$$\bullet \ (m_{H_u}^2 + |\mu|^2) < 0 \quad \text{, } \ (m_{H_d}^2 + |\mu|^2) > 0$$

- ullet only the up-type Higgs gets a vev. $v_u/v_d=\infty$!
- loop effects generate B_{μ} , small $v_d \longrightarrow v_u/v_d \gg 1$
- ullet y_b , $y_ au \sim \mathcal{O}(1)$ but certainly perturbative

careful, $v_u/v_d = \tan \beta$ is a confusing parameter!

<u>Uplifted SUSY + flavor</u>

for ${v_u\over v_d}\gg 1$ heavy neutral Higgs (H⁰/A⁰) lie in the H_d doublet $-y_d~d^c~H_d^0~d_L$

Diagonalizing the mass term, you get off-diagonal entries in $y_{d,ij}$

$$y_{bs}=y_b\ V_{ts}\ \xi$$
 $y_{sb}=\frac{m_s}{m_b}y_{bs}$ order 1, complex, sensitive to splitting of sfermions

off-diagonal entries are big $(\mathcal{O}(V_{CKM}))$ and carry new, potentially large phases

right in the range needed to have an effect on B_s for $m_A \sim TeV$

<u>Uplifted SUSY + flavor</u>

- effects in B_d system suppressed by m_d/m_s
- flavor changing couplings vanish when sfermions are degenerate, so if $M_{\tilde{Q}_1}\cong M_{\tilde{Q}_2}\neq M_{\tilde{Q}_3}$ $M_{\tilde{d}_1}\cong M_{\tilde{d}_2}\neq M_{\tilde{d}_3}$

$$M_{\tilde{d}_1} \cong M_{\tilde{d}_2} \neq M_{\tilde{d}_3}$$

no flavor-violation in the Kaon system

Starting from degenerate sfermion masses at a high scale, Yukawa couplings in RGEs will automatically generate the desired splitting

$$y_b \sim 1, y_{s,d} = y_b \frac{m_{s,d}}{m_b} \ll 1$$
 $M_{\tilde{Q},3} < M_{\tilde{Q},1,2}$

(Dobrescu, Fox, Martin work in progress)

What else can Uplifted SUSY do for you?

- interesting effects in another B-system anomaly
- distinct collider signals

<u>Uplifted SUSY + flavor</u>

other interesting effects: $B^\pm \to au^\pm
u$

SM:
$$B(B^- \to \tau \nu)_{\rm SM} = (0.84 \pm 0.11) \times 10^{-4}$$
 (UTfit: 0908.3470)

Belle + BaBar: $B(B^- \to \tau \nu) = (1.73 \pm 0.34) \times 10^{-4}$

• in the MSSM (or other `type-2' THDM):

$$\frac{B(B^-\to\tau\nu)}{B(B^-\to\tau\nu)_{SM}} = \left[1-\tan^2\beta\frac{M_B^2}{M_{H^\pm}^2}\right]^2 \quad \begin{array}{l} \text{hard to manage an} \\ \text{enhancement without} \\ \text{throwing off other observables} \end{array}$$

• in `uplifted SUSY':

$$rac{B(B^- o au
u)}{B(B^- o au
u)_{
m SM}} = \left[1-\left(rac{y_b}{y_bv_d+y_b'v_u}
ight)\left(rac{y_ au}{y_ au v_d+y_ au'v_u}
ight)rac{M_B^2}{M_{H^-}^2}
ight]^2$$

we can have a relative (-) between y_b and y_b' :

enhances $B^{\pm} \rightarrow \tau^{\pm} \nu$

<u>Uplifted SUSY + flavor</u>

more effects:

• $B_s^0 \to \mu^+ \mu^-$ affected by same process:

• altered collider signatures large y_{τ}

large
$$y_{\tau}$$

large BR (~30 - 80%) for heavy Higgses (H/A) to $\tau^+\tau^-$ (vs. 10% in usual MSSM)

Conclusions

- D0 like-sign dimuon asymmetry, interpreted as B oscillations means there must be BSM physics
- it's tricky to work in new physics to explain excess without messing up existing flavor constraints
- One possibility: new physics in phase of M^{s}_{12} -- NP must be large with large phase. In this case, should see an effect in $S_{\psi\phi}$

'Uplifted SUSY' region is one scenario with the right properties to explain excess

- FCNC through H/A exchange
- couplings sensitive to complex SUSY parameters
- assuming $M_{\tilde{Q}_3} \neq M_{\tilde{Q}_1} \simeq M_{\tilde{Q}_2}$ effects in $B_s^0 > B_d^0 \gg K^0$

• other B-system/collider signatures soon

EXTRAS

Latest CDF S_{ψΦ}

Combining $S_{\psi\phi}$ and a^{s}_{SL}

Once SUSY is broken B_{μ} generated at one loop

(slide by P. Fox)